ABSTRACT
Around 10% of the people have dyslexia, a neurological disability that impairs a person’s ability to read and write. There is evidence that the presentation of the text has a significant effect on a text’s accessibility for people with dyslexia. However, to the best of our knowledge, there are no experiments that objectively measure the impact of the font type on reading performance. In this paper, we present the first experiment that uses eye-tracking to measure the effect of font type on reading speed. Using a within-subject design, 48 subjects with dyslexia read 12 texts with 12 different fonts. Sans serif, monospaced and roman font styles significantly improved the reading performance over serif, proportional and italic fonts. On the basis of our results, we present a set of more accessible fonts for people with dyslexia.

Keywords
Dyslexia, font types, typography, readability, legibility, text layout, text presentation, eye-tracking.

1. INTRODUCTION
Worldwide, around 15-20% of the population has a language based learning disability [17]. Likely, 70-80% of them have dyslexia [17], a neurological disability which impairs a person’s ability to read and write. Previous research has shown that text presentation can be an important factor regarding the reading performance of people with dyslexia [11, 25].

On the other hand, any digital text has to be written using one or several certain font types. Although the selection of font types is crucial in the text design process, empirical analyses of reading performance of people with dyslexia has focused more on font size [23, 26] rather than on font type.

In this paper we present the first study that measures the impact of the font type on the reading performance of 48 people with dyslexia using eye-tracking, as well as asking them their personal preferences.

The main contributions of this study are:

– Font types have a significant impact on readability of people with dyslexia.

– Good fonts for people with dyslexia are Helvetica, Courier, Arial, Verdana and Computer Modern Unicode, taking into consideration reading performance and subjective preferences. On the contrary, Arial It. should be avoided since it decreases readability.

– Sans serif, roman and monospaced font types increased the reading performance of our participants, while italic fonts did the opposite.

Next section focuses on dyslexia, while Section 3 reviews related work. Section 4 explains the experimental methodology and Section 5 presents the results, which are discussed in Section 6. In Section 7 we derive recommendations for dyslexic-friendly font types and we mention future lines of research.

2. DYSLEXIA
Dyslexia is a hidden disability. A person with dyslexia cannot perceive if they are reading or writing correctly. Dyslexia is characterized by difficulties with accurate word recognition and by poor spelling and decoding abilities [16]. This implies that people with dyslexia have more difficulty accessing written information and, as side effect, this impedes the growth of vocabulary and background knowledge [16]. Popularly, dyslexia is identified with its superficial consequences, such as writing problems like letter reversals; but dyslexia is a reading disability with a neurological origin. Brain structure, brain function, and genetics studies confirm the biological foundations of dyslexia [31].

Although dyslexia is also popularly identified with brilliant famous people, such as Steve Jobs or Steven Spielberg, the most frequent way to detect a child with dyslexia is by low-performance in school [4]. Moreover, dyslexia is frequent. From 10 to 17.5% of the population in the U.S.A. [15] and from 8.6 to 11% of the Spanish speaking population [18] have this cognitive disability. The frequency and the universal neuro-cognitive basis of dyslexia are the main motivations of this study.

1Despite its universal neuro-cognitive basis, dyslexia manifestations are variable and culture-specific [31].
3. RELATED WORK
The relationship between fonts and dyslexia has drawn the attention of many fields, such as psychology, arts, and accessibility. We divide related work in: (1) fonts recommended for people with dyslexia, (2) fonts designed for this target group, and (3) related user studies.

3.1 Recommendations
Most of the recommendations come from associations for people with dyslexia and they agree in using sans-serif fonts. The British Dyslexia Association recommends to use Arial, Comic Sans or, as alternatives to these, Verdana, Tahoma, Century Gothic, and Trebuchet [2]. However, the website does not disclose on the basis of which evidence these recommendations are made. In [10] recommendations for readers with low vision as well as readers with dyslexia are put in comparison, giving as a result the recommendation of using also Arial and Comic Sans. In [22] is recommended to avoid italics and fancy fonts, which are particularly difficult for a reader with dyslexia, and also point to Arial as preferred font. Another font recommended in 2010 was Sassoon Primary but not anymore [9].

The only recommendation for serif fonts has been done by the International Dyslexia Centre [13] and that was for Times New Roman. According to [1], Courier is easier to read by people with dyslexia because it is monospaced.

In the Web Content Accessibility Guidelines (WCAG) [3], dyslexia is treated as part of a diverse group of cognitive disabilities and they do not propose any specific guidelines about font types for people with dyslexia.

Surprisingly, none of the typefaces recommended by the dyslexia organizations mentioned above were ever designed specifically for readers with dyslexia.

3.2 Fonts Designed for People with Dyslexia
We found four fonts designed for people with dyslexia: Sylexiad [12], Dyslexie [21], Read Regular, and OpenDyslexic. The four fonts have in common that the letters are more differentiated compared to regular fonts. For example, the shape of the letter ‘b’ is not a mirror image of ‘d’. From these fonts, we choose to study OpenDyslexic (both roman and italic styles), because it is the only open sourced and hence free. This font has been already integrated in various tools.

3.3 User Studies
There are several uses studies on text presentation and people with dyslexia regarding font and background colors [25], font [23, 26] or letter spacing [33].

The closest work to ours is a study with people with dyslexia [21] that compared Arial and Dyslexie. They conducted a word-reading test with 21 students with dyslexia (Dutch One Minute Test). Dyslexie did not lead to faster reading, but could help with some dyslexia-related errors in Dutch. In [29], test design for people with dyslexia is explored with a qualitative study with just eleven students. In some tasks, the participants needed to choose the font they prefer, but no analyses of the chosen fonts is presented.

3.4 What is Missing?
What is missing is an objective investigation into the effect of the most frequent fonts on reading performance. Our experiment advances previous work by providing this evidence via quantitative data from eye-tracking measurements. In addition, with testing 12 different fonts with 48 participants, we compare a greater number of font types with a larger number of participants than previous studies. We selected the fonts on the basis of their popularity and frequency of use in the Web.

4. METHODOLOGY
To study the effect of font type on readability and comprehensibility of texts on the screen, we conducted an experiment where 48 participants with dyslexia had to read 12 comparable texts with varying font types. Readability and comprehensibility were analyzed via eye-tracking and comprehension tests, respectively, using the latter as a control variable. The participants’ preference was gathered via questionnaires.

4.1 Design
In our experimental design, Font Type served as an independent variable with 12 levels: Arial, Arial Italic, Computer Modern Unicode (CMU), Courier, Garamond, Helvetica, Myriad, OpenDyslexic, OpenDyslexic Italic, Times, Times Italic, and Verdana (See Figure 1). We use for brevity OpenDys for the corresponding fonts in the rest of the paper.

We chose to study Arial and Times because they are the most common fonts used on screen and printed texts, respectively [5]. OpenDyslexic was selected because is a free font type designed specifically for people with dyslexia and Verdana because is the recommended font for this target group [2]. We choose Courier because is the most common example of monospaced font [5]. Helvetica and Myriad were chosen for being broadly used in graphic design and for being the typeface of choice of Microsoft and Apple, respectively. We chose Garamond because is claimed to have strong legibility for printed materials [5] and we selected CMU because is widely used in scientific publishing, as is the default of the typesetting program TeX, as well as a free font supporting many languages [20].

![Figure 1: Fonts used in the experiment.](http://www.readregular.com/)
We also made sure that the fonts cover variations of essential font characteristics:

- **Italics** served as independent variable with two values: *italic* denotes the condition where the text was presented using an italic type, that is, a cursive typeface, and *roman* denotes the condition when the text was presented in a roman type. We study the italic types of Arial, OpenDyslexic, and Times.

- **Serif** served as independent variable with two values: *serif* denotes the condition where the text was presented with typefaces with serifs, small lines trailing from the edges of letters and symbols, and *sans serif* denotes the condition when the text used typefaces without serifs. In our set of fonts there are three serif fonts –CMU, Garamond, and Times– and four sans serif fonts –Arial, Helvetica, Myriad, and Verdana–.

- **Monospace** served as independent variable with two values: *monospaced* denotes the condition where the text was presented using a monospaced type, that is, a font whose letters and characters each occupy the same amount of horizontal space, and *proportional*, where the text was presented using proportional fonts. We chose the most commonly used monospaced font, the roman serif font Courier, and we compare it with the rest of the roman and serif fonts that are proportional: CMU, Garamond and Times.

For quantifying readability, we used two dependent measures: **Reading Time** and **Fixation duration**, both extracted from the eye-tracking data. To control text comprehension of the texts we use one comprehension question as a control variable. To collect the participant preferences, we used subjective **Preference Ratings** through questionnaires.

Reading Time: Shorter reading durations are preferred to longer ones since faster reading is related to more readable texts [32]. Therefore, we use **Reading Time**, i.e. the time it takes a participant to completely read one text, as a measure of readability, in addition to **Fixation Duration**.

Fixation Duration: We used fixation duration as an objective approximation of readability. When reading a text, the eye does not move contiguously over the text, but alternates saccades and visual fixations, that is, jumps in short steps and rests on parts of the text. **Fixation duration** denotes how long the eye rests still on a single place of the text and we use the mean of the fixation durations obtained by the eye-tracker. Fixation duration has been shown to be a valid indicator of readability. According to [24, 14], shorter fixations are associated with better readability, while longer fixations can indicate that processing loads are greater. On the other hand, it is not directly proportional to reading time as some people may fixate more often in or near the same piece of text (re-reading).

To check that the text was not only read, but also understood, we used literal questions, that is, questions that can be answered straight from the text. We used multiple-choice questions with three possible choices: one correct choice, and two wrong choices. We use this comprehension question as a control variable to guarantee that the recordings analyzed in this study were valid. If the reader did not chose the correct answer, the corresponding text was discarded from the analysis.

Preference Ratings: In addition, we asked the participants to provide their personal preferences. For each of the twelve text-font pairs, the participants rated on a five-point Likert scale, how much did they like the font type used in the text presentation.

We used a within-subject design, that is, each participant read 12 different texts with 12 different fonts, hence, contributing to each condition. We counter-balanced texts and fonts to avoid sequence effects. Therefore, the data with respect to text-font combinations was evenly distributed.

4.2 Participants

We had 48 people (22 female, 26 male) with a confirmed diagnosis of dyslexia taking part in the study. Their ages ranged from 11 to 50 (\(\bar{x} = 20.96, s = 9.98\)) and they all had normal vision. All of them presented official clinical results to prove that dyslexia was diagnosed in an authorized center or hospital. Except from 3 participants, all of the participants were attending school or high school (26 participants), or they were studying or had already finished university degrees (19 participants). We discarded the eye-tracking recordings that had less then the 75% of the sample recorded, hence, 46 out of the 48 recordings were valid.

4.3 Materials

To isolate the effects of the text presentation, the texts themselves need to be comparable in complexity. In this section, we describe how we designed the texts that were used as study material.

4.3.1 Texts

All the texts used in the experiment meet the comparability requirements because they all share the parameters commonly used to compute readability [8]. All the texts were extracted from the same book, *Impostores* (Impostors), by Lucas Sánchez [28]. We chose this book because its structure (32 chapters) gave us the possibility of extracting similar texts. Each chapter of the book is an independent story and it starts always by an introductory paragraph. Thus, we went through the book and selected the introduction paragraphs sharing the following characteristics:

(a) Same genre and same style.

(b) Same number of words (60 words). If the paragraph did not had that number of words we slightly modified it to match the number of words.

(c) Similar word length, with an average length ranging from 4.92 to 5.87 letters.

(d) Absence of numerical expressions, acronyms, and foreign words, because people with dyslexia specially encounter problems with such words [27, 7].

\[\text{In the Catalonian protocol of dyslexia diagnosis [6], the different kinds of dyslexia, extensively found in literature, are not considered.}\]
El texto habla de: ‘The text is about:’
- Un sueño. ‘A dream.’
- Un parque de atracciones. ‘An amusement park.’
- Un helado de chocolate. ‘A chocolate ice cream.’

Figure 2: Comprehension control question example.

4.3.2 Text Presentation
Since the presentation of the text has an effect on the reading speed of people with dyslexia [11], we used the same layout for all the texts. They were left-justified, using a 14 points font size, and the column width did not exceed 70 characters/column, as recommended by the British Association of Dyslexia [2]. The color used was the most frequently used in the Web for text: black text on white background.

4.3.3 Comprehension Control Questions
After each text there was one literal comprehension control question. The order of the correct answer was counterbalanced. An example of one of these questions is given in Figure 2. The difficulty of the questions chosen was similar.

4.4 Equipment
The eye-tracker we used was the Tobii 1750 [30], which has a 17-inch TFT monitor with a resolution of 1024 × 768 pixels. The time measurements of the eye-tracker have a precision of 0.02 seconds. Hence, all time values are given with an accuracy of two decimals. The eye-tracker was calibrated individually for each participant and the light focus was always in the same position. The distance between the participant and the eye-tracker was constant (approximately 60 cm. or 24 in.) and controlled by using a fixed chair.

4.5 Procedure
The sessions were conducted at the Universitat Pompeu Fabra and lasted around 20 minutes. Each session took place in a quiet room, where only the interviewer (first author) was present, so that the participants could concentrate. Each participant performed the following three steps. First, we began with a questionnaire that was designed to collect demographic information. Second, the participants were given specific instructions. They were asked to read the 12 texts in silence and complete the comprehension control questions after each text. In answering the question they could not look back on the text. The reading was recorded by the eye-tracker. Finally, each participant was asked to provide his/her preference ratings.

5. RESULTS
In this section, we present the reading performance results and the preference ratings.

5.1 Reading Performance
A Shapiro-Wilk test showed that nine and eight out of the twelve data sets were not normally distributed for the Reading Time and Fixation Duration, respectively. Also, a Levene test showed that none of the data sets had an homogeneous variance for both measures. Hence, to study significant effects of Font Type in readability we used the Friedman’s non-parametric test for repeated measures plus a complete pairwise Wilcoxon rank sum post-hoc comparison test with a Bonferroni correction that includes the adjustment of the significance level. To study the effect of the second level independent variables, Italics, Serif, and Monospace, we use a Wilcoxon test. For these reasons we later include the median and box plots for all our measures in addition to the average and the standard deviation. All this analysis was done using the R statistical software.

5.1.1 Font Type
Table 1 shows the main statistical measures for the Reading Time and Fixation Duration for each of the Font Type conditions. Reading Time and Fixation Duration had a Pearson correlation of 0.67 and \(p < 0.001 \). This is as expected, recalling that reading time is the most relevant measure.

Reading Time: There was a significant effect of Font Type on Reading Time \((\chi^2(11) = 31.55, p < 0.001) \) (Figure 3). The results of the post-hoc tests show that:

- Arial It. had the longest reading time mean. Participants had significantly longer reading times using Arial It. than Arial \((p = 0.011) \), CMU \((p = 0.011) \), and Helvetica \((p = 0.034) \).

Fixation Duration: There was a significant effect of Font Type on Fixation Duration \((\chi^2(11) = 93.63, p < 0.001) \) (Figure 4). The results of the post-hoc tests show that:

- Courier has the lowest fixation duration mean. Participants had significantly shorter fixation durations reading with Courier than with Arial It. \((p < 0.001) \), CMU \((p < 0.001) \), Garamond \((p < 0.001) \), Times It. \((p < 0.001) \), Open Dys It. \((p = 0.001) \), and Arial \((p = 0.046) \).

- Helvetica has the third lowest fixation duration mean. Participants had significantly shorter fixation durations reading with Helvetica than with Arial It. \((p < 0.001) \), CMU \((p = 0.001) \), and Garamond \((p = 0.006) \).

- Participants had significantly shorter fixation durations reading with Arial than with CMU \((p = 0.020) \).

- Arial It. had the highest fixation duration mean. Participants had significantly longer fixation durations reading with Arial It. than with Courier \((p < 0.001) \), Helvetica \((p < 0.001) \), Arial \((p < 0.001) \), Times It. \((p < 0.001) \), Times \((p = 0.003) \), Myriad \((p = 0.004) \), Garamond \((p = 0.011) \), and Verdana \((p = 0.049) \).

Summarizing, Courier lead to significant shorter fixations durations than six other fonts and Arial It. lead to significant longer fixations durations than eight other fonts. In fact, 16 out of the 66 pairwise comparisons were significant.

5.1.2 Italics
Reading Time: We did not find a significant effect of Italics on Reading Time \((W = 4556, p = 0.09) \). The visit duration means were \(\bar{x} = 32.35 \) seconds \((\bar{x} = 28.77, s = 14.62) \).

We use \(\bar{x} \) for the mean, \(\bar{x} \) for the median, and \(s \) for the standard deviation.
Figure 3: Reading Time box plots by Font Type ordered by average Reading Time. (Lower reading times indicate better readability.)

Figure 4: Fixation Duration box plots by Font Type ordered by average Reading Time. (Lower fixation durations indicate better readability.)

<table>
<thead>
<tr>
<th>Font Type</th>
<th>Reading Time</th>
<th>Fixation Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial</td>
<td>24.22 ± 28.35 s</td>
<td>2.22 ± 0.22 s</td>
</tr>
<tr>
<td>OpenDys</td>
<td>23.81 ± 29.17 s</td>
<td>2.23 ± 0.23 s</td>
</tr>
<tr>
<td>CMU</td>
<td>26.06 ± 29.58 s</td>
<td>2.24 ± 0.24 s</td>
</tr>
<tr>
<td>Courier</td>
<td>29.73 ± 29.61 s</td>
<td>2.23 ± 0.24 s</td>
</tr>
<tr>
<td>OpenDys It.</td>
<td>25.44 ± 29.68 s</td>
<td>2.25 ± 0.25 s</td>
</tr>
<tr>
<td>Helvetica</td>
<td>27.18 ± 31.05 s</td>
<td>2.25 ± 0.25 s</td>
</tr>
<tr>
<td>Verdana</td>
<td>28.97 ± 31.16 s</td>
<td>2.25 ± 0.26 s</td>
</tr>
<tr>
<td>Times</td>
<td>29.30 ± 31.68 s</td>
<td>2.24 ± 0.26 s</td>
</tr>
<tr>
<td>Times It.</td>
<td>28.55 ± 32.38 s</td>
<td>2.26 ± 0.26 s</td>
</tr>
<tr>
<td>Myriad</td>
<td>26.95 ± 32.66 s</td>
<td>2.25 ± 0.27 s</td>
</tr>
<tr>
<td>Garamond</td>
<td>30.53 ± 33.30 s</td>
<td>2.25 ± 0.27 s</td>
</tr>
<tr>
<td>Arial It.</td>
<td>29.68 ± 34.99 s</td>
<td>2.28 ± 0.28 s</td>
</tr>
</tbody>
</table>

Table 1: Median, mean and standard deviation of Reading Time and Fixation Duration in seconds as well as the median, mean, and standard deviation of the Preference Ratings. We include the relative percentage for Reading Time, our main readability measure, with respect to the smallest average value, Arial.
and \(\bar{x} = 29.74 \) seconds (\(\bar{x} = 27.04, s = 13.40 \)) for the fonts in italic and in roman, respectively.

Fixation Duration: There was a significant effect of *Italics* on Fixation Duration \((W = 829.7, p = 0.040) \). In fact, the fixation duration mean of the fonts in italics (Arial It., OpenDys It., and Times It.), \(\bar{x} = 0.27 \) seconds \((\bar{x} = 0.26, s = 0.08) \), was significantly larger than the fixation duration mean of the fonts in roman (Arial, OpenDys and Times), \(\bar{x} = 0.25 \) seconds \((\bar{x} = 0.24, s = 0.07) \).

5.1.3 Serif

Reading Time: We did not find a significant effect of *Serif* on Reading Time \((W = 11852, p = 0.202) \). The visit duration means were \(\bar{x} = 31.53 \) seconds \((\bar{x} = 29.06, s = 13.21) \) and \(\bar{x} = 30.80 \) seconds \((\bar{x} = 27.08, s = 13.83) \) for the serif fonts and sans serif font types, respectively.

Fixation Duration: There was a significant effect of *Serif* on Fixation Duration \((W = 10547.5, p = 0.008) \). Indeed, the fixation duration mean of the fonts with serif, \(\bar{x} = 0.26 \) seconds \((\bar{x} = 0.25, s = 0.07) \), was significantly larger than the fixation duration mean of the fonts sans serif, \(\bar{x} = 0.24 \) seconds \((\bar{x} = 0.24, s = 0.07) \).

5.1.4 Monospace

Reading Time: We did not find a significant effect of *Monospace* on Reading Time \((W = 3589.5, p = 0.159) \). The visit duration means were \(\bar{x} = 29.61 \) seconds \((\bar{x} = 29.73, s = 10.87) \) and \(\bar{x} = 31.53 \) seconds \((\bar{x} = 29.06, s = 13.20) \) for the monospaced fonts and the proportional fonts, respectively.

Fixation Duration: There was a significant difference of *Monospace* on Fixation Duration \((W = 4251.5, p < 0.001) \). We found that the fixation duration mean of the monospaced font, \(\bar{x} = 0.22 \) seconds \((\bar{x} = 0.22, s = 0.05) \), was significantly shorter than the fixation duration mean of the proportional fonts, \(\bar{x} = 0.26 \) seconds \((\bar{x} = 0.25, s = 0.07) \).

5.2 Preferences Ratings

A Shapiro-Wilk test showed that the twelve data sets were not normally distributed for the Preference Ratings. Also, a Levene test showed that none of the data sets had an homogeneous variance. Hence, to study the effect of *Font Type* we use the same analysis of the previous section.

5.2.1 Font Type

Figure 5 shows the means of the Preference Ratings for each of the Font Types and in Table 1 we show the main statistical measures for the participants preferences.

Preference Ratings and Reading Time had a Pearson correlation of -0.13, negative as expected (Table 1). However is close to 0, which implies that there is almost no correlation between the reading time and the participants preferences.

There was a significant effect of **Font Type** on subjective preference ratings \((\chi^2(11) = 79.6119, p < 0.001) \). Pairwise post-hoc comparisons showed significant differences between the following conditions:

- **Verdana** is significantly preferred over **Arial It** \((p < 0.001) \). **OpenDys It**. \((p = 0.002) \), **Garamond** \((p = 0.008) \), and **Times It**. \((p = 0.041) \).
- **Helvetica** is significantly preferred over **OpenDys It**. \((p = 0.010) \), **OpenDys** \((p = 0.020) \), and **Arial It**. \((p = 0.031) \).
- **Arial** was significantly more preferred than **Arial It**. \((p = 0.028) \) and **OpenDys It**. \((p = 0.050) \).
- **Garamond** was significantly less preferred than **Verdana** \((p = 0.008) \). **Times** \((p = 0.023) \). **Arial** \((p = 0.023) \), and **CMU** \((p = 0.030) \).

Hence, participants significantly preferred **Verdana** and **Helvetica** to other fonts and significantly disliked **Garamond** in comparison with others.

5.2.2 Fonts Subsets

We did not find a significant difference of *Italics* on the participants preferences \((W = 2747.5, p = 1) \). The preference ratings mean of the fonts in *italics* was \(\bar{x} = 3.73 \) seconds \((\bar{x} = 3, s = 1.20) \) and for the fonts in *roman* was \(\bar{x} = 3.21 \) seconds \((\bar{x} = 3, s = 1.22) \).

We did not find a significant effect of *Serif* on the participants preferences \((W = 13030.5, p = 0.999) \). The preference ratings mean of the fonts with serif was \(\bar{x} = 3.05 \) seconds \((\bar{x} = 3, s = 1.17) \) and for the fonts with sans serif was \(\bar{x} = 3.46 \) seconds \((\bar{x} = 4, s = 1.17) \).

We did not find a significant effect of *Monospace* on the participants preferences \((W = 2574.5, p = 0.789) \). The preference ratings means were \(\bar{x} = 3.13 \) seconds \((\bar{x} = 3, s = 1.19) \) and \(\bar{x} = 3.14 \) seconds \((\bar{x} = 3, s = 1.39) \) for the monospaced and the proportional fonts, respectively.

6. DISCUSSION

First, our results on reading performance provide evidence that font types have an impact on readability. Second, these results are consistent with most of the current text design recommendations for people with dyslexia. Fonts sans serif and in roman style, lead to shorter fixation durations in our participants, as recommended in [22]. However, these styles did not lead to significant shorter reading durations.

Overall, the reading time of the *italic* fonts was always worse than its *roman* counterpart, confirming the commonly established fact that cursive letters are harder to read for people with dyslexia. Although sans serif, monospaced and roman fonts lead to significant shorter fixation durations, we did not find a significant difference in reading time. Hence, our conclusions towards these characteristics are weaker.

Although **Arial** is highly recommended in literature [2, 10, 22] and had the shortest reading time, we cannot conclude
that this font type leads to better readability because we
only found significant differences with respect to OpenDys
It. and Arial It. However, Arial It. did lead to significant
longer reading times than Helvetica, Arial, and CMU and
significant longer fixation durations than most of the fonts.
Hence, we recommend to avoid using Arial It. Moreover,
participants significantly preferred Arial to Arial It.

The two fonts that lead to shorter fixation durations than
other fonts were Courier and Helvetica. Hence the use of
these fonts might help people with dyslexia to read faster.
This is consistent with the recommendation of [1] to use
Courier and with [22] to use sans serif fonts in the case of
Helvetica. Also, Helvetica was the second most significantly
preferred font by our participants after Verdana.

The fonts designed specifically for dyslexia, OpenDys
and OpenDys It., did not lead to a better or worse readability.
As in [21], OpenDys did not lead to a faster reading. However,
we did not performed a reading out loud test with words,
which is what might improve with the use of specially de-
signed fonts [21]. In addition, our participants significantly
preferred Verdana or Helvetica for reading than OpenDys
and OpenDys It.

One way to understand these results is to build the partial
order obtained by considering all the order relations that are
valid for the average values in Reading Time and the Prefer-
ence Ratings. The result is given in Figure 6 (a), where the
fonts can be grouped in four different levels. However, not
all of these order relations are significant. Hence, the partial
orders at the right, (b) and (c), show the significant relations
for Reading Time and Preference Ratings, respectively.
In the case of (b), the wider relations show the fact that those
are also significant for Fixation Duration. From these partial
orders, the only three fonts that are not dominated in both
partial orders, (b) and (c), are Helvetica, CMU, and Arial.
These can be considered good fonts for dyslexia when we
also consider the subjective preferences of the participants.
The next two in importance are Verdana and Times.

7. CONCLUSIONS AND FUTURE WORK
The main conclusion is that font types have an impact on
readability of people with dyslexia. Good fonts for
people with dyslexia are Helvetica, Courier, Arial, Verdana
and CMU, taking into consideration both, reading performance
and subjective preferences. Also, sans serif, monospaced,
and roman font types increased significantly the reading per-
formance, while italic fonts decreased reading performance.
In particular, Arial It. should be avoided since it signifi-
cantly decreases readability.

These findings can have impact on systems that rely on text
as the main information medium, such as browsers, PDF
viewers, or eBook readers. We plan to integrate these find-
ings in the IDEAL eBook Reader6 [19], and in the web service Text4All7. The last two tools modify text layout for people with dyslexia. Using fonts that are good for people with dyslexia improves the accessibility for a large percentage of the population and should not impact other people. Hence, the fonts we propose should be used in practice.

Future challenges involve studying the effect of the font types on the comprehension and in different contexts and devices. We also want to do the same analysis with people without dyslexia.

Acknowledgments
This research was partially funded by the Spanish Ministry of Education and Science (Grant TIN2009-14560-C03-01). The research of the first author was also funded by the Catalanian FI scholarship program. We also thank Mari-Carmen Marcos for her assistance with the eye-tracker hardware and Martin Pielot for his help with statistics.

8. REFERENCES

6https://play.google.com/store/apps/details?id=org.easyaccess.epubreader
7http://www.text4all.net/dyswebxia.html